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UAV-Assisted Task Offloading in Vehicular
Edge Computing Networks
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Abstract—Vehicular edge computing (VEC) provides an effec-
tive task offloading paradigm by pushing cloud resources to the
vehicular network edges, e.g., road side units (RSUs). However,
overloaded RSUs are likely to occur especially in urban aggre-
gation areas, possibly leading to greatly compromised offloading
performance. Inspired by this, this article explores this situation
by introducing an unmanned aerial vehicle (UAV) to address the
VEC overload problem. Specifically, we formulate a novel online
UAV-assisted vehicular task offloading problem to minimize ve-
hicular task delay under the long-term UAV energy constraint.
To solve the formulated problem, we first decouple the long-term
energy constraint based on the Lyapunov optimization technique.
In this way, the problem can be solved in a real-time manner
without requiring future information. Then, we construct a Markov
chain based on Markov approximation optimization to find out the
close-to-optimal UAV-assisted offloading strategies. Furthermore,
we derive a mathematical analysis to rigorously demonstrate the
offloading performance of the proposed algorithm. Additionally,
the simulation results show that the proposed method outperforms
the baselines by significantly reducing the vehicular task delay
constrained by the long-term UAV energy budget under various
system parameters, such as the energy budget and computation
workloads.

Index Terms—Lyapunov optimization, Markov approximation,
UAV-assisted task offloading.

I. INTRODUCTION

W ITH the rapid advancement of mobile computation and
sensor technologies, internet of vehicles (IoV) has been
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a promising paradigm for the future 6G era [1]. It has the
potential of spurring the proliferation of many emerging ve-
hicular applications, such as mobile augmented reality and
autonomous driving. To support computing-hungry and delay-
sensitive applications, vehicles equipped with various advanced
onboard sensors will be a requirement to run sophisticated
software and algorithms, e.g., real-time trajectory tracking, nav-
igation positioning, and environmental recognition. The pro-
cessing consumes tremendous vehicular computation resources
and battery power. Although the computing capabilities of
vehicles are more substantial than those of portable mobile
devices, computing-hungry applications still pose significant
challenges for onboard vehicular processing. For example, a
mobile augmented reality application demands 40 billion com-
putation cycles and completion within 10 milliseconds, while lo-
cal on-board processing produces several hundred milliseconds.
Even for companies like NVidia developing vehicle’s onboard
units with high computation capabilities, the post-production
upgrades are still generally not profitable [2]. Furthermore,
on-board processing affects the vehicular driving range. For
instance, a modern electric vehicle with a 2 kW computing
system can cause a 25% reduction in the driving range during
rush hour [3].

To address the above issues, vehicular edge computing (VEC)
has been extensively studied [4], [5], [6], [7], [8], [9]. In VEC
networks, vehicles can offload the computing-hungry applica-
tions to vehicular edge servers (e.g., road side units (RSUs)) for
execution to achieve reduced processing delay and lower energy
consumption. We present a typical example of autonomous driv-
ing as follows. For an autonomous vehicle driving on the street,
many real-time driving tasks with heavy computation workloads
need to be executed, such as the video recognition task for the
detection of surrounding traffic conditions and the online path
planning task for intelligent driving decision-making. However,
due to the complex traffic environment and limited vehicular
computing ability, the on-board processing causes prolonged
response time, leading to low driving efficiency, and may even
cause autonomous driving accidents [10]. To cope with this
dilemma, VEC is introduced to guarantee the response delay
by allowing autonomous vehicles to offload real-time tasks
(e.g., sensor data fusion and perception analysis) to the RSUs,
thereby realizing a more efficient task processing and reliable
autonomous driving [11].

Unfortunately, RSUs perform poorly when they are located
in urban aggregation areas [12]. More explicitly, a presence in
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Fig. 1. Computation workload distribution in Futian district, Shenzhen.
(a) 9:00. (b) 15:00. RSUs located in areas with dark red reflect that the RSUs
are highly overloaded.

an urban aggregation areas indicates that, the vehicle density is
likely large, and excessive computation requests could be initi-
ated [13]. Accordingly, the RSUs with constrained computing
capabilities in these areas are unable to handle the computation
requests that may come from a number of computing-hungry
vehicular tasks. Taking a real-world example of IoV trajectory
dataset in Shenzhen city [12], [14], these trajectories reflect the
vehicular movements in the VEC networks. On this basis, we can
obtain the number of vehicles within the selected areas during
the period. For a selected area in VEC networks, its computation
workloads are determined by both the vehicular numbers and the
task arrivals. By combining the vehicular trajectories with the
vehicular task arrivals, we can obtain the computation workloads
of the selected area. Guided by this, we visualize the distribution
of the vehicle computation workloads as illustrated in Fig. 1.
The dark red denotes the urban aggregation area, in which VEC
overload [15], [16] occurs, namely, large computation work-
loads exceed the computing capabilities of the RSUs. Under
these circumstances, the RSUs have to alleviate the excessive
computation workloads from vehicles through queuing, post-
poning or even refusing, which inevitably degrades the quality
of service (QoS).

We observe that the computation workloads of RSUs follow
the first law of geography [12], [17]. To be exact, as shown
in Fig. 1, the RSUs located in the center of the hot zone (i.e.,
the aggregated area) have the largest vehicular task computation
workloads and are likely overloaded [13], and their neighboring
RSUs have large workloads since they are a short distance from
the center. The cooperation method [18], [19] may provide a
solution in which the overloaded RSUs ask for help from their
neighbors with abundant computing resources. However, this
solution suffers from a degraded task offloading performance in
exploiting the collaborative computing resources. Alternatively,
the RSUs need to cross several different RSUs to receive coop-
eration, which creates additional communication costs between
the RSUs and a series of other issues, including path selection,
service continuity, and trust risk [15], [20].

Furthermore, it is noted that due to the time-varying char-
acteristics of the aggregation effect [12], the locations of the
overloaded RSUs change over time, depending on their serving
of the vehicle density and the vehicular task arrivals. To address
these issues, existing works [21], [22] explore the opportunity
by introducing an external assistant to solve the VEC overload
problem, such as a cloud server. In a cloud-assisted scenario,

the excessive computation workloads can be further offloaded
from the RSUs to the remote cloud server. Nevertheless, cloud
computing incurs large transmission delay due to the long
communication distance between the RSUs and the cloud server.
In addition, a vast amount of data transmission will impose a
great burden on the already-congested core network. Motivated
by the limitations of the existing methods as well as the charac-
teristics of vehicular computation workloads, a more agile and
efficient approach needs to be proposed.

In this article, we introduce an unmanned aerial vehicle (UAV)
to liberate the overloaded RSUs from the heavy computation
workloads. Note that if the overloaded RSUs in the hot zone
center can be offered an offloading service by the UAV, the
computing pressure in this area will be significantly reduced. To
that end, we strive to develop a novel vehicular task offloading
scheme with the inclusion of UAV-assisted edge computing. In
particular, a UAV equipped with edge servers enables edge com-
puting, thus providing an offloading service for the overloaded
terrestrial RSUs [23]. The common line-of-sight (LoS) com-
munications between the UAV and terrestrial RSUs desirably
empower effective air-land connectivity, which will not impact
the original network environment but can also achieve low delay.
Furthermore, thanks to its high mobility and agility, a UAV can
adapt its location in response to the varying computation work-
loads among the RSUs, thereby offering an effective offloading
service.

Despite the existing UAV-assisted offloading efforts in the
literature [24], [25], [26], [27], [28], few works propose a
specific UAV-assisted VEC framework for vehicular task of-
floading, where the two main challenges are faced. (i) The
long-term UAV’s energy constraint. The performance of a UAV
is mainly restricted by its available energy since its behavior
has to conform to an energy budget for a long time. If a UAV
currently consumes too much energy, the available energy for the
following time slots will be reduced. As a result, the long-term
UAV-assisted task offloading performance would be greatly
degraded. (ii) Intractable UAV-assisted offloading decisions. It
is challenging to determine the optimal UAV-assisted offloading
decisions in VEC networks. Specifically, the overloaded RSUs
act as UAV-assisted candidates, while the candidates change
across time slots due to the varying task computation workloads.
In addition, even though the abovementioned long-term con-
straint problem can be solved, the time-coupling characteristic
remains and complicates UAV-assisted offloading.

To address the abovementioned challenges, this article studies
UAV-assisted vehicular task offloading in VEC networks, where
we aim to minimize the vehicular task delay under the long-term
energy constraint of the UAV. The contributions of this article
are summarized as follows.
� We study the UAV-assisted vehicular task offloading prob-

lem in VEC networks. To address the long-term UAV’s
energy constraint, we develop an online method to trans-
fer the long-term energy constraint to a real-time solv-
able constraint by constructing an energy deficit queue
based on the Lyapunov optimization technique (detailed in
Section V-A). Moreover, we prove that the method achieves
close-to-optimal performance compared with the optimal
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method with all of the future information (e.g., vehicular
task arrivals) while bounding the violation of the UAV’s
energy consumption constraints.

� We leverage the Markov approximation optimization tech-
nique to solve the intractable UAV-assisted task offloading
problem (detailed in Section V-B). To that end, we intro-
duce the task offloading probability distribution and convex
log-sum-exp function to transform the vehicular task delay
minimization problem into a Markov approximation opti-
mization problem, where a Markov chain is constructed to
achieve effective UAV-assisted task offloading.

� We conduct extensive simulations and the results validate
the effectiveness of our proposed methods under various
system parameters, such as the energy budget, deficit
queue, and computation workloads, in terms of the vehicu-
lar task delay and the long-term UAV energy consumption.

The remainder of the paper is organized as follows. Section II
presents the related works, followed by the system models
and a problem formulation in Sections III and IV. Section V
presents the online UAV-assisted task offloading. In Section VI,
we present the performance evaluations. Finally, we conclude
this article in Section VII.

II. RELATED WORKS

In this section, we review the related works on task offloading
in VEC networks, existing solutions for VEC overload, and
UAV-assisted task offloading.

A. Task Offloading in VEC Networks

By pushing cloud resources to the vehicular network edges,
VEC enables the delivery of offloading services for computing-
hungry vehicular tasks. On this basis, previous studies have
investigated task offloading in VEC environments[4], [5], [6],
[16], [29], [30], [31], [32]. The authors in [4] investigate partial
computation offloading and adaptive task scheduling, with the
goal of achieving the optimal transmission scheduling discipline
and offloading ratio. The authors in [5] design a priority-based
resource allocation scheme in the VEC system under bursty
task arrivals. The authors in [6] perform self-learning based
distributed computation offloading to make computation of-
floading decisions for IoV, without requiring the assistance of
any centralized controller. The authors in [16] propose a novel
vehicle-mounted edge mechanism to maximize the completed
tasks through comprehensive consideration of path planning and
resource allocation. The authors in [29] present a two-layer cloud
and RSU offloading architecture, aiming at maximizing the
task completion ratio with strict delay constraints. The authors
in [30] design a learning-based offloading scheme, enabling
neighboring vehicles to learn the offloading delay performance
in a vehicular edge computing system. In this way, the minimal
average task offloading delay can be achieved. The authors
in [31] investigate a cooperative task offloading scheme by
jointly considering the task migration and heterogeneous com-
puting capabilities, aiming at minimizing the service delay. The
authors in [32] propose an offloading algorithm based on deep

reinforcement learning, with the goal of maximizing the QoE
for vehicle users.

Although these works attain satisfactory performance un-
der the corresponding scenarios, they neglect the fact that a
vehicular edge server has limited computation resources. Once
the requested computation workloads exceed the computing
capabilities of the vehicular edge server (i.e., VEC overload),
the QoS of the vehicular tasks will greatly deteriorate and the
expected performance cannot be guaranteed.

B. Existing Solutions to VEC Overload

To resolve VEC overload, there are two main existing so-
lutions. The solutions take the VEC resource constraints into
consideration in task offloading to avoid suboptimal offloading
strategies and unpredictable degraded offloading performance.
One solution is cloud-assisted task offloading [33], where the
cloud serves as a backup server for processing the task compu-
tation workloads from vehicular edge servers. Although a cloud
has powerful computing capabilities, cloud-assisted offloading
inevitably incurs large task transmission delay due to the pro-
longed network distance between the vehicular edges and the
cloud. The other solution is VEC cooperation [18], [20], [34],
[35], which involves one-hop and multihop cooperation. The
authors in [18], [34] consider one-hop VEC cooperation, namely,
the excessive workloads can be offloaded to a nearby vehicular
edge server with redundant computing resources. Constrained
by the limited cooperative coverage, the approach may cause
compromised performance in exploiting collaborative comput-
ing resources, especially for the aggregated areas of a city. For
that reason, several works involving [15], [20] focus on multihop
VEC cooperation, where tasks can be further offloaded from
the current vehicular edge servers to several vehicular edge
servers across multiple edge nodes. Unfortunately, the multihop
cooperation inherently attracts extra communication cost and
incurs service continuity and trust risk problems. Since the
existing solutions are incapable of effectively addressing the
VEC overload, other methods need to be proposed.

C. UAV-Assisted Task Offloading

Recently, UAV-assisted task offloading has attracted increas-
ing attention [24], [25], [26], [26], [35], [36], [37], [38], where
UAVs enable the delivery of offloading services for computing-
hungry tasks. For instance, the authors in [24] study that the
UAV provides offloading services for IoT mobile devices, aim-
ing at minimizing the entire energy consumption of the end
devices. The authors in [25] propose a computation rate max-
imization problem in the UAV-enabled MEC system, where
the UAV provides offloading services for mobile users. The
authors in [26] develop a UAV-assisted relaying and edge com-
puting framework, where a UAV acts as a computing node for
task offloading or a relay for further offloading. The authors
in [35] optimize the UAV energy and task processing rate under
long-term data queue stability in a UAV-enabled MEC system,
without requiring future knowledge of the task data and energy
arrivals. The authors in [36] jointly consider service placement,
UAV movement trajectory, task scheduling, and computation
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Fig. 2. System model. Vehicles offload their computing-hungry tasks to RSUs
to achieve small task delay. When the RSUs are overloaded, the UAV will select
an overloaded RSU to deliver offloading services.

resource allocation for UAV-enabled mobile edge computing,
aiming to minimize the overall energy consumption of mobile
users under task latency and resource constraints. The authors
in [37] investigate the optimal trajectory and CPU frequency
under a UAV-assisted edge computing framework to minimize
the UAV’s energy consumption. The authors in [38] consider the
cooperation of the edge computing stations and UAVs, where
the edge computing stations provide computation resources
for the UAVs and the UAVs process the offloaded tasks from
mobile users with the allocated computation resources. Through
cooperation, satisfactory quality of services can be realized.

Clearly, the aforementioned works concentrate either on a
UAV-enabled system, where a UAV provides offloading service
to end-users directly [24], [25], [35], [36], [37], or a UAV
relay system by introducing a UAV to act as a relay for mobile
users [26], [38]. To achieve these goals, the accurate location
information of mobile users is required for UAV-assisted task
offloading approaches, while the exact information is difficult
to predict or obtain in real-world VEC scenarios. Furthermore,
once the UAV flies away without the tasks being completed, the
task offloading performance will inevitably be greatly degraded.
Different from these works, we consider a UAV-assisted offload-
ing scenario, where the UAV assists the overloaded RSUs rather
than serving the end vehicles directly or acting as a relay. In
this way, changing location information of the mobile vehicles
is not required for the UAV. Moreover, when the UAV leaves
for another aggregation area, the related vehicular tasks in the
former aggregation area can be processed by the RSUs.

III. SYSTEM MODELS

Fig. 2 illustrates an edge computing ecosystem in the VEC
networks. The operational timeline in our system is discretized
into time slots (0, . . . , t . . . , T − 1) with duration Δ. The VEC
system consists of three layers, the vehicle layer, the RSU layer,
and the UAV layer. Vehicle v ∈ V generates computing-hungry
tasks and offloads the tasks to RSU m ∈ M via vehicle-to-
infrastructure (V2I) communication links. When the compu-
tation workloads exceed the RSU’s computing capacity, VEC
overload occurs. To handle this problem, a UAV equipped with
edge servers is introduced to deal with the excessive computation

TABLE I
MAIN NOTATIONS

workloads from the overloaded terrestrial RSUs. Similar to most
existing studies, such as [36], [37], we assume that UAV u flies
at a fixed altitude H and its position at time slot t is denoted as
(xtu, y

t
u, H). The main notations are illustrated in Table I.

A. System Characteristics

The UAV-assisted VEC system is unique regarding the fol-
lowing characteristics.
� First, this system emphasizes delay-sensitive and

computing-hungry vehicular task offloading. Specifically,
these vehicular tasks must be completed within strict
deadlines (delay-sensitive), and processing these tasks
inevitably consumes a large amount of computing
resources (computing-hungry). As a result, a vehicle with
limited computing resources is incapable of processing
the tasks in time, and hence, it is critical to offload these
tasks to the RSUs to achieve small task delay.

� Second, this system pays particular attention to the effect of
the computation workloads. The computation workloads
change across time slots, initiated from dynamic vehicle
density and different vehicular task arrivals. When an RSU
has excessive computation workloads, the vehicular tasks
may be queued, postponed, or even refused. Consequently,
liberating an RSU from heavy computation workloads is
important for satisfactory QoS.

� Third, the UAV acts as an aerial edge server to provide
offloading service for overloaded terrestrial RSUs in the
system. Once the UAV provides offloading service for the
overloaded RSU in the hot zone, the computing pressure
in this area will be greatly relieved. In addition, unlike
conventional backup servers (e.g., clouds), the UAV is near
the overloaded RSUs, and its location can be adjusted to
follow the changing computation workloads.
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B. Vehicular Task Offloading Model

Task arrivals are assumed to be a Poisson process [18]. We
use λt

v (in task number per time slot) to denote the task arrival
rate of vehicle v at time slot t. Without loss of generality, we
assume that the expected computation workloads and data size
for one task could be performed as c (in required CPU cycles
per task) and d (in date bits per task). Correspondingly, λt

vc and
λt
vd are the task computation workloads and data bits of vehicle
v at time slot t, respectively.

When implementing vehicular task offloading, the vehicular
tasks are transmitted to the RSUs using orthogonal frequency
division multiple access (OFDMA) scheme. On this basis, each
RSU’s bandwidth resources are divided into multiple orthogonal
subchannels and each subchannel can be allocated to at most
one vehicle. Thus, we ignore the intra-cell interference among
vehicles and consider inter-cell interference. Denote Υt

m,v as
the inter-cell interference when RSU m assigns a subchannel to
vehicle v for task transmission at time slot t.

Υt
m,v =

∑
i∈M\{m}

∑
j∈V\Vt

m

P t
i,jH

t
i,j , (1)

where i ∈ M\{m} and j ∈ V\Vt
m denote the RSU set except

RSU m and the vehicle set other than vehicles within the radio
coverage of RSU m, respectively. P t

i,j and Ht
i,j represent the

transmission power and channel gain when vehicular tasks are
offloaded from RSU i to vehicle j at time slot t. Thus, the
transmission rate (in Mbits per second) between RSU m and
vehicle v at time slot t is expressed as:

rtm,v = Bt
m,vlog2(1 +

Ht
m,vP

t
m,v

(σt
m,v)

2 +Υt
m,v

),m ∈ M, t ∈ T ,

(2)
where Bt

m,v, Ht
m,v , P t

m,v, and σt
m,v represent the channel

bandwidth, channel gain, transmission power, and noise power
between vehicle v and RSUm at time slot t, respectively. Hence,
the transmission delay from the vehicles to RSU m at time slot
t can be expressed as:

Tm,t
trans =

∑
v∈Vt

m

λt
vd

rtm,v

,m ∈ M, t ∈ T , (3)

where Vt
m represents the vehicle set within the V2I communi-

cation coverage of RSU m at time slot t.
After vehicular task offloading, we ascertain that the total

task arrival rate of RSU m at time slot t is
∑

v∈Vt
m

λt
v. Corre-

spondingly,
∑

v∈Vt
m

λt
vc and

∑
v∈Vt

m
λt
vd denote the computa-

tion workloads and data bits of RSUm at time slot t, respectively.
Constrained by the limited computing resources of the RSUs,
VEC overload occurs (those RSUs are marked in red in Fig. 2)
when the computation workloads exceed the RSU’s computing
capacity. Denote Kt as the set of overloaded RSUs at time slot t
(Kt ≤M ). The location of overloaded RSU k is assumed to be
constant with altitudes of H0 on the ground, and its horizontal
coordinates are expressed as lk = (xk, yk), k ∈ Kt.

C. UAV-Assisted Offloading Model

To solve the VEC overload problem, we introduce a UAV
to deal with the excessive computation workloads from the

overloaded RSUs. The UAV provides an offloading service for
a single overloaded RSU k ∈ Kt per time slot. We denote
stk ∈ {0, 1} as the UAV offloading decision. When stk = 1, the
UAV provides an offloading service for the overloaded RSU k
at time slot t; if stk = 0, RSU k is not selected at time slot t. Let
ctk (in required CPU cycles per time slot) and dtk (in data bits
per time slot) represent the task computation workloads and the
data size that offload from overloaded RSU k to the UAV at time
slot t, respectively. Since the offloaded tasks cannot exceed the
overall tasks of the RSU, the following constraints need to be
satisfied.

ctk ≤
∑
v∈Vt

m

λt
vc, k ∈ Kt, t ∈ T , (4)

dtk ≤
∑
v∈Vt

m

λt
vd, k ∈ Kt, t ∈ T . (5)

Then, the vehicular tasks will be transmitted from the over-
loaded RSU k to the UAV for processing. The wireless channel
between the UAV and the overloaded RSU k is assumed to
be dominated by the probabilistic LoS channel. We denote
the probability of a LoS channel between overloaded RSU k
and UAV u at time slot t as εtu,k, which is determined by
the environment-related parameters and the elevation angle of
UAV [35].

εtu,k =
1

1 + μ1 exp(−μ2(βt
u,k − μ1))

, (6)

where μ1 and μ2 are both environment-related parameters, and
βt
u,k = arctan(H −H0/‖ltu − ltk‖) represents the elevation an-

gle when UAV u delivers the offloading services for overloaded
RSU k at time slot t. As such, the channel gain is given by:

gtu,k =
g0(ε

t
u,k + ζ(1− εtu,k))

((H −H0)2 + ‖ltu − lk‖2)
, (7)

whereg0 is the gain when the reference distance l0 = 1m, param-
eter ζ is an attenuation factor of the NLoS channel, ltu = (xtu, y

t
u)

and lk = (xk, yk) represent the horizontal coordinates of UAV u
and overloaded RSU k, respectively. On this basis, the offloaded
vehicular tasks are transmitted from the overloaded RSU k to
UAV u at time slot t. The transmission rate (in Mbits per second)
is expressed as:

rtu,k = Bt
u,klog2

(
1 +

gtu,kP
t
u,k

(σt
u,k)

2

)
, (8)

where Bt
u,k, gtu,k, P t

u,k and σt
u,k represent the transmission

rate, channel bandwidth, channel gain, transmission power, and
noise power between overloaded RSU k and UAV u at time
slot t, respectively. Correspondingly, the transmitting delay is
expressed as:

Tu,k,t
trans =

dtk
rtu,k

, k ∈ Kt, t ∈ T . (9)

At the same time, the UAV arrives at position (xk, yk, H),
to provide offloading services for the selected overloaded RSU
k at the beginning of time slot t. Let fu (in CPU cycles per
second) denote the computing ability of UAV u. We obtain the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 06:39:32 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: UAV-ASSISTED TASK OFFLOADING IN VEHICULAR EDGE COMPUTING NETWORKS 2525

UAV-assisted task computation delay:

Tu,k,t
comp =

ctk
fu
, k ∈ Kt, t ∈ T . (10)

Accordingly, the computation energy consumed by UAV u at
time slot t can be obtained as:

Eu,k,t
comp = b(fu)2ctk, k ∈ Kt, t ∈ T , (11)

where b is the energy coefficient of the UAV which relies on the
chip architecture.

The remaining computation workloads without UAV process-
ing will be processed by the related RSUs. We denote fm (in
CPU cycles per second) as the computing ability of RSUm. The
computation delay conducted by RSU m is:

Tm,t
comp =

∑
v∈Vt

m
λt
vc− stki

m
k c

t
k

fm
,m ∈ M, t ∈ T , (12)

where imk is used to denote whether RSU m is exactly the
overloaded RSU k (imk = 1) or not (imk = 0). When imk = 1 and
stk = 1, ctk reflects the computation workloads offloaded from
RSU m (i.e., RSU k) to the UAV at time slot t.

Additionally, the queue delay needs to be taken into consider-
ation for the overloaded RSUs due to network congestion, and
we use M/M/1 queue theory to model the process [18]:

T k,t
queue =

τ

1− τξ
, k ∈ Kt, t ∈ T , (13)

where τ = d/rtk,v denotes the expected delay for transmitting
one task from vehiclev to the overloaded RSUkwithout network
congestion, and ξ =

∑
v∈Vk

λt
vd− dtk represents the remaining

data bits of overloaded RSU k.
After task processing, the UAV produces otdtk bits of task out-

put data for overloaded RSU k, where ot is the task input-output
ratio at time slot t. Then, the UAV will send the task-output
data back to overloaded RSU k with the duration of Tu,k,t

output.
Furthermore, overall RSUs need to feedback the task-output
data to the vehicles to complete the vehicular tasks. Denote the
feedback delay from RSU m to the vehicles at time slot t as:

Tm,t
output =

∑
v∈Vt

m

otλt
vd

rm,v,t
output

,m ∈ M, t ∈ T , (14)

where rm,v,t
output (in Mbits per second) is the data transmission rate

from RSU m to vehicle v at time slot t.
Note that the UAV stays hovering within finite time to receive

data, perform edge computing and feedback the task output for
overloaded RSU k. Thus, the corresponding energy consump-
tion isEu,k,t

hover = ψt
u(T

u,k,t
trans + Tu,k,t

comp + Tu,k,t
output), where ψt

u is a
constant energy value per second [39].

Furthermore, UAV u arrives at overloaded RSU k2 from over-
loaded RSU k1 at the next time slot due to varying computation
workloads. To achieve this, UAV u adjusts its flight speed. We
assume that UAV u flies with a constant speed vtu per time slot
but can be adjusted across time slots.

vtu =
‖lt+1

u − ltu‖
Δ

, t ∈ T . (15)

The propulsive energy (i.e., fly energy) is consumed to keep
UAV u in the air at time slot t, which is expressed as

Eu,k,t
fly = 	‖vtu‖2, t ∈ T . (16)

where 	 is related to the weight of the UAV [24].

D. UAV Energy Harvesting Model

Short battery life sharply degrades the UAV offloading per-
formance. As a solution, energy harvesting (EH) technology is
applied to UAV-assisted task offloading, where the UAV often
harvests radio frequency (RF) energy to alleviate the UAV’s
energy burden [40]. However, RF-based energy harvesting may
be severely degraded due to the path loss in practical UAV-
assisted task offloading scenarios. Thus, we extend the harvest-
ing process and look for other renewable energy (e.g., wind
and solar energy) to compensate for the UAV’s energy [41],
[42]. The EH process is modeled as successive energy packet
arrivals, and the arrivals are assumed to be independent and
identically distributed [41]. Although the model is simple, it
retains the stochastic and intermittent nature of the harvested
energy packets. We denote et to reflect the energy packet arrivals
at the UAV at the beginning of time slot t.

0 ≤ et ≤ etmax, t ∈ T , (17)

where etmax represents the maximum available energy packets
captured by the UAV at time slot t.

UAV u is assumed to be fully charged at the initial time slot,
and its energy budget per time slot is expressed as:

Ēu =
Eu

max

T
, (18)

where Eu
max indicates the fully charged energy of the UAV.

Overall, UAV’s energy consumption at time slot t is:

Et
u = Eu,k,t

comp + Eu,k,t
hover + Eu,k,t

fly , k ∈ Kt, t ∈ T . (19)

The long-term energy constraint should be satisfied:

1

T

T−1∑
t=0

E{Et
u − et} ≤ Ēu. (20)

Note that the extra energy of et supplemented by EH cannot
exceed UAV’ energy consumption of Et

u at time slot t.

E. Assumptions

In Sections III-B, III-C, and III-D, we present vehicular task
offloading, UAV-assisted offloading, and UAV EH models. In
this section, we detail assumptions before problem formulation.
� To simplify, we assume that each vehicular task is identical

in the expected data bits and computation workloads. The
assumption is motivated by the fact that moving vehicles
often have similar task requests[43]. Despite the simpli-
fied assumption, a varying distribution of the computation
workloads can be depicted by combining the assumption
with different vehicular task arrivals. As such, such an
assumption is adopted in existing studies, including [18].
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� Moreover, we assume a homogeneous computing environ-
ment by ignoring the effect of specific hardware on compu-
tation workloads. In many existing studies, e.g., [35], [44],
[45], such an assumption is general.

� Without loss of generality, we assume that the ground is
at zero altitude [26]. On this basis, the overloaded RSUs
have a constant altitude ofH0, and the UAV flies at a fixed
altitude ofH . Guided by these, we analyzed the task delay
and UAV’s energy consumption during a UAV-assisted task
offloading trip, detailed in Section III-C.

� Similar to many previous works [12], [37], [44], [45], a
quasi-static scenario is considered within the duration of
each time slot, where the requested computation tasks and
edge computing capabilities remain unchanged during the
duration but can be changed across different time slots.

IV. PROBLEM FORMULATION

Recall that for Section III, the task delay is expressed as:

T t
u = T t

RSU + T t
UAV , t ∈ T , (21)

where T t
RSU =

∑
m∈M Tm,t

trans + Tm,t
comp + T k,t

queue + Tm,t
output is

the task delay conducted by the RSU-enabled offloading, and
T t
UAV =

∑
k∈Kt T

u,k,t
trans + Tu,k,t

comp + Tu,k,t
output is the task delay

performed by UAV-assisted offloading.
Our objective is to minimize vehicular task delay under the

long-term energy constraint of the UAV by adjusting UAV-
assisted offloading strategies stk. Formally, the optimization
problem is formulated as:

P1 min
stk

1

T

T−1∑
t=0

E{T t
u},

s.t. (4), (5), (17), (20). (22)

Constraints (4) and (5) denote that the offloaded tasks cannot
exceed task arrivals. Cconstraint (17) denotes that the energy
packets captured by EH technology have a maximum value.
Constraint (20) shows that offloading strategies are constrained
by the long-term UAV energy budget.

Remarks. It is not straightforward to solve P1 directly since
the following two challenges remain. i) The long-term energy
constraint in (20) substantially complicates the UAV-assisted
offloading strategies. In the long-term optimization problem,
the overall offline information (e.g., task arrivals and captured
energy packets) is required for solving P1. However, such in-
formation is difficult to acquire, if not impossible in real-world
UAV-assisted VEC scenarios. ii) Discrete UAV-assisted offload-
ing strategies cause a non-convex optimization problem. Worse
still, the UAV-assisted offloading strategies are coupled across
time slots due to the temporal correlation of the remaining UAV
energy. If UAV u consumes too much energy at time slot t, its
remaining available energy would be less, which complicates
the derivation of the optimal solutions to P1.

To address the above-mentioned challenges, we design an
online UAV-assisted task offloading approach rather than solv-
ing the original long-term problem P1 directly. The approach
enables vehicular task offloading in a real-time manner without

foreseeing future information, which is detailed in the next
section.

V. ONLINE UAV-ASSISTED TASK OFFLOADING

In this section, we propose online UAV-assisted vehicular
task offloading algorithms based on the Lyapunov optimization
technique and Markov approximation methods. After that, we
analyze the algorithm’ performance.

A. Online Problem Transformation via the Lyapunov
Optimization Technique

Since the long-term UAV’s energy budget impedes the deriva-
tion of the solutions to P1, we construct a virtual UAV energy
deficit queue to decouple the long-term UAV’s energy constraint
based on the Lyapunov optimization technique [46]. We define
the virtual energy deficit queue as:

Bt+1
u = max{Bt

u + Et
u − et − Ēu, 0}, t ∈ T , (23)

whereEt
u is the energy consumption of the UAV, et is the energy

captured by the EH technique, and Ēu is the energy budget
for the UAV at time slot t. Clearly, the energy deficit queue
is a non-negative indicator that reflects the energy violation of
the UAV at each time slot. When the UAV consumes excessive
energy, the energy deficit queue will enlarge; in other words,
more energy violation incurs. The deficit queue at the initial
time slot is set as zero, i.e., B0

u = 0.
Based on the UAV energy deficit queue, we apply the Lya-

punov drift-plus-penalty framework to P1 and hence derive the
following online optimization problem:

P2 min
stk

V · T t
u +Bt

u · Et
u.

s.t. (4), (5), (17). (24)

Remarks. The optimization problem P2 is liberated from the
long-term energy constraint (20) compared with P1. Therefore,
P2 can be solved in an online manner, not requiring overall
offline information. In the online optimization problem, the
objectives are vehicular task delay of T t

u and UAV’s energy
consumption ofEt

u, which are weighted by the control parameter
V and the energy deficit queue Bt

u, respectively. By reasonably
adjusting the weighted factors, a well-tradeoff between vehicular
task delay and UAV’s energy budget can be realized. Specifically,
the control parameter V provides a static adjustment, which
is fixed in UAV-assisted vehicular task offloading. A larger V
facilitates reducing vehicular task delay. We will discuss the
impact of the parameter V in Sections VI-B and VI-C. Further-
more, the energy deficit queue ofBt

u delivers a dynamic control,
which varies due to different energy consumption of the UAV. A
larger energy deficit queue indicates the less remaining energy
of the UAV. Consequently, the UAV intends to reduce its energy
consumption at the following time slots. In this way, an online
UAV’s energy adjustment can be achieved in the optimization
problem P2. We will discuss the impact of the energy deficit
queue in Section VI-A. By solving the online optimization
problem, satisfactory UAV-assisted offloading strategies of P1
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Algorithm 1: Online UAV-Assisted Vehicular Task
Offloading.

can be identified and the performance gap between P1 and P2
will be analyzed in Section V-C.

Guided by this, we present the online Algorithm 1 to solve
the task delay minimization problem under the long-term UAV
energy constraint. In the algorithm, the UAV determines its
offloading strategy by solving the online optimization problem
P2.

B. Markov Approximation for UAV-Assisted Task Offloading in
VEC Networks

Note that P2 is still difficult to solve in practical VEC sce-
narios since the UAV-assisted offloading strategy stk is a discrete
decision variable. As a solution, we leverage the Markov approx-
imation algorithm to transfer P2 to the following formulation
inspired by the analysis in [47]:

P3 min
P≥0

∑
stk∈St

p(stk)f(s
t
k), (25)

s.t.
∑
stk∈St

p(stk) = 1, (26)

where St denotes all feasible UAV-assisted vehicular task of-
floading strategies at time slot t. p(stk) ∈ P is an indicator to
represent the probability that UAV u provides an offloading
service for overloaded RSU k under the offloading strategy stk
at time slot t. To simplify our expression, we define

f(stk) = V · T t
u +Bt

u · Et
u. (27)

The objective of P3 is to find the optimal UAV-assisted task
offloading decision to minimize the weighted vehicular task
delay, which has the same optimal solution as P2 [48].

To solve P3, we introduce a convex log-sum-up function
Jα(s

t
k) to approximate the optimization objective f(stk).

Jα(s
t
k) = − 1

α
log

⎛⎝∑
stk∈St

exp(−αf(stk))

⎞⎠ , t ∈ T , (28)

whereα is a positive constant. Jα(stk) enables us to approximate
the optimization objective f(stk). Its optimality gap satisfies the
following theorem.

Theorem 1. The Jα(stk) approximation gap is upper-bounded
by 1

α log |St|.
Proof 1. Given a positive constant α, we have:

min
stk∈St

f(stk) = − 1

α
log

(
min
stk∈St

exp(−αf(stk))
)

≥ − 1

α
log

⎛⎝∑
stk∈St

exp
(
−αf(stk)

)⎞⎠
≥ − 1

α
log

⎛⎝∑
stk∈St

exp

(
−α min

stk∈St
f(stk)

)⎞⎠
≥ min

stk∈St
f(stk)−

1

α
log |St|. (29)

Based on the above analysis, we obtain

min
stk∈St

f(stk)−
1

α
log |St| ≤ Jα(s

t
k) ≤ min

stk∈St
f(stk). (30)

Therefore, we prove that the Jα(stk) approximation gap is
upper-bounded by 1

α log |St|.
Accordingly, we can derive the following convex log-sum-exp

problem P4 motivated by [49].

P4 min
P≥0

∑
stk∈St

p(stk)f(s
t
k) +

1

α

∑
stk∈St

p(stk) log p(s
t
k),

s.t. (26). (31)

When the positive constant α tends to infinity, P4 is equiva-
lent to P3. Problem P4 can be solved with the Karush-Kuhn-
Tucker (KKT) condition [4]:

f(stk) +
1

α
log p

(
st∗
)
+

1

α
+ v∗ = 0, (32)∑

stk∈St

p(st∗) = 1, (33)

where v is the Lagrange multiplier. The optimal solution at time
slot t can be derived by:

p(st∗) =
exp

(
−α

∑
stk∈St f(st∗)

)
∑

˜st∗∈St exp
(
−α

∑
stk∈St f(s̃t∗)

) , t ∈ T , (34)

where s̃t∗ denotes the UAV-assisted strategy combination without
the strategy st∗. To determine the optimal UAV-assisted strategy
st∗, we define the following transition probability between two
different strategies, which is negatively correlated with the sys-
tem objective of f(stk):

p(stk, s̃
t
k) = γ(exp(αf(stk)))

−1, t ∈ T , (35)

where γ is a positive constant, and p(stk, s̃
t
k) denotes the proba-

bility that the UAV-assisted strategy is converted from stk to s̃tk.
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Algorithm 2: Markov Approximation Algorithm for UAV-
Assisted Vehicular Task Offloading.

A larger p(stk, s̃
t
k) indicates a lower probability that strategy stk

is chosen at time slot t.
In a discrete-time Markov chain, the following stationary

balance equations should be satisfied for any two different
UAV-assisted strategies.

p(stk)p(s
t
k, s̃

t
k) = p(s̃tk)p(s̃

t
k, s

t
k), k ∈ Kt, t ∈ T . (36)

The Markov approximation algorithm for UAV-assisted ve-
hicular task offloading is presented in Algorithm 2. At each time
slot, the UAV constructs a discrete-time Markov chain. Then,
the UAV calculates the task delay, energy consumption, and
transition probability based on (24) and (35), respectively. Once
the balance constraint in (36) achieves, the optimal UAV-assisted
strategy st∗ can be obtained.

Next, we analyze the complexity of the Markov approxi-
mation algorithm. For each overloaded RSU, calculating the
vehicular task delay and the UAV’s energy consumption incurs
O(Kt) computational complexity per time slot. After obtaining
the transformation probability, we need to update the UAV-
assisted offloading strategies. The corresponding computational
complexity of the update isO(Kt). Assuming that the algorithm
achieves convergence after I iterations, we ascertain that the time
complexity of Algorithm 2 is O(IKt). As such, we ascertain
that the total computational complexity across T time slots is
O(TIKt).

C. Performance Analysis

In this section, we conduct performance analysis for the
proposed algorithms. Based on the theory in [46], we define
a quadratic Lyapunov function as a measure of the virtual UAV
energy deficit queue.

L(Bt
u) �

1

2
(Bt

u)
2, t ∈ T . (37)

A smallL(Bt
u) leads to large UAV energy consumption toler-

ance at time slot t. Then, we introduce the one-slot conditional
Lyapunov drift as follows:

Δ(Bt
u) � E{L(Bt+1

u )− L(Bt
u)|Bt

u}, t ∈ T . (38)

Combining (23) and (37), we obtain the inequality:

Δ(Bt
u) ≤ E{(Bt

u)(E
t
u − etu − Ēu)|Bt

u}+B, (39)

whereB = 1
2 (E

max
u − Ēu)

2, andEmax
u is the upper limit of the

UAV’s energy consumption.
According to the above analysis, we present the two theorems

to elaborate the performance gap between P4 and the original
optimization problem P1 in the optimization objective T t

u and
long-term constraint Et

u, respectively.
Theorem 2. Given a control parameter V and α, the optimal-

ity gap between our proposed approximated solution and the
theoretical optimal solution is expressed as:

1

T

T−1∑
t=0

E{T t
u|Bt

u} ≤ B

V
+ T opt +

1

V α
log |St|. (40)

where T opt = 1
T

∑T−1
t=0 E{T t

u} represents the optimal vehicular
task delay in P1.

Proof 2. According to the illustration in Theorem 4.5 in [46],
we produce the following lemma.

Lemma 1. For any λ, there is a stationary and randomized
policy stπ for P2, satisfying

E{T t
u(s

t
π)} ≤ T opt + λ, (41)

E{Et
u(s

t
π)− etu − Ēu} ≤ λ. (42)

Based on Lemma 1, we obtain:

Δ(Bt
u) + V E{T t

u|Bt
u}

≤ E{(Bt
u)(E

t
u(s

t
∗)− etu − Ēu)|Bt

u}

+B + V E{T t
u(s

t
∗)|Bt

u}+
1

α
log |St|

≤ E{(Bt
u)(E

t
u(s

t
π)− etu − Ēu)|Bt

u}

+B + V E{T t
u(s

t
π)|Bt

u}+
1

α
log |St|

≤ B + V (T opt + λ) +
1

α
log |St|. (43)

Summing (43) over t ∈ {0, . . . , T − 1}, dividing by the total
time slots T and the control parameter V each side. Letting
λ = 0, we obtain:

1

T

T−1∑
t=0

E{T t
u|Bt

u} ≤ B

V
+ T opt +

1

V α
log |St|. (44)
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Theorem 3. For UAV u, its long-term energy bound is:

1

T

T−1∑
t=0

(
Bt

u

)
≤ 1

η

(
B +

1

α
log |St|+ V (Tmax)− T opt

)
,

(45)
where Tmax represents the maximum task delay.

Proof 3. We elaborate the long-term UAV energy constraint.
Lemma 2. ∃η > 0, χ(η), there is a policy stθ for P2:

E{T t
u(s

t
θ)} = χ(η), (46)

E{Et
u(s

t
θ)− etu − Ēu} ≤ −η. (47)

Based on Lemma 2, we obtain:

Δ(Bt
u) + V E{T t

u|Bt
u}

≤ E{(Bt
u)(E

t
u(s

t
∗)− etu − Ēu)|Bt

u}

+B + V E{T t
u(s

t
∗)|Bt

u}+
1

α
log |St|

≤ E{(Bt
u)(E

t
u(s

t
θ)− etu − Ēu)|Bt

u}

+B + V E{T t
u(s

t
θ)|Bt

u}+
1

α
log |St|

≤ B + V χ(η)− η(Bt
u) +

1

α
log |St|. (48)

Summing (48) over t ∈ {0, . . . , T − 1}, and dividing by the
total time slots T each side.

1

T
E(L(BT

u )− L(B0
u)) +

V

T

T−1∑
t=0

E{T t
u|BT

u }

≤ B + V χ(η)− T

η

T−1∑
t=0

(Bt
u) +

1

α
log |St|. (49)

Then, dividing by the control parameter η. We have

1

T

T−1∑
t=0

(Bt
u) ≤

1

η

(
B +

1

α
log |St|+ V (Tmax)− T opt

)
.

(50)
Combining Theorems 2 and 3, we find that there exists an

[O(1/V ), O(V )] trade-off between the vehicular task delay and
the energy deficit queue. When V tends to ∞, the optimal
vehicular task delay in P1 can be achieved at the price of a large
energy deficit. Determining a suitable control parameter V is
essential to seek the balance between the vehicular task delay
and the long-term UAV’s energy constraint. Furthermore, a large
energy deficit queue indicates that stabilizing the system requires
more energy adjustments and thus postpones convergence. Then,
we investigate the stability of the energy deficit queue.

Theorem 4. The long-term UAV’s energy budget in (20) can
be enforced when limT→+∞ E{BT

u }/T = 0.
Proof 4. Based on (23), we derive the following expressions:

Et
u − et − Ēu ≤ Bt+1

u −Bt
u. (51)

Then, summing (51) over t ∈ {0, . . . , T − 1}, dividing by the
total time T and taking the expectation each side. We obtain the

following inequality:

1

T

T−1∑
t=0

E{Et
u − et − Ēu} ≤ E{BT

u }
T

. (52)

According to the long-term energy constraint shown in (20),
the following expression must be guaranteed:

lim
T→+∞

E{BT
m}

T
= 0. (53)

Following that, we investigate whether (53) can be satisfied.
Guided by (49), we rearrange the terms, let B0

m = 0, and we
have:

E(L(BT
u )) ≤ T (B +

1

α
log |St|+ V (χ(η)− T opt)). (54)

Based on the Cauchy–Bunyakovsky–Schwarz inequality, we
derive the following inequality:

1

T
E(BT

u ) ≤
√

2

T

(
B +

1

α
log |St|+ V (χ(η)− T opt)

)
.

(55)
Then, we analyze the convergence of the right term in (55)

when T tends to infinity. Clearly, the expression converges to
zero in this case.

lim
T→+∞

√
2

T

(
B +

1

α
log |St|+ V (χ(η)− T opt)

)
= 0. (56)

The results demonstrate that limT→+∞ E{BT
u }/T = 0 is

achieved, and hence the long-term UAV’s energy constraint can
be guaranteed.

VI. PERFORMANCE EVALUATION

Our simulations are based on a real-world example of the IoV
dataset [12], [14] in Futian District, Shenzhen, from 22◦31′N to
22◦36′N, and from 114◦3′E to 114◦10′E. These trajectories are
used to simulate the vehicular movement in the VEC networks.
Combining the trajectories with task arrivals, we can obtain the
computation workloads of the selected area. The vehicular task
arrivals of λt

v ∈ [1, 3] follow a Poisson distribution [18]. Based
on the real measurements in [50], we set the expected computa-
tion workloads of c and data bits of d for one vehicular task as 0.5
GHz and 500 Kb, respectively. For simplification, the selected
area is divided into 7 × 7 mesh grids. Each grid is deployed
an RSU to provide offloading services for the vehicles within
the V2I communication coverage. The computing capabilities
of an RSU are distributed in [4, 8] GHz [50]. If the computation
workloads exceed the RSU’s computing capacity, the RSU is
overloaded. Then, the overloaded RSU requests offloading ser-
vice from the UAV with the probabilistic LoS connection. Once
the request is permitted, vehicular tasks can be further offloaded
from the overloaded RSU to the UAV. We assume that the UAV’s
vertical flight altitude is 30 meters [24], and the maximum speed
of vmax is 25 meters per second [35]. The computing capabilities
of the UAV are set as 5 GHz [51]. Guided by [24], the UAV’s
weight including the payload is assumed to be 9.65 kg, and the
total energy budget is assumed to be 500 kJ. Additionally, the
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TABLE II
PARAMETERS SETTING

Fig. 3. Effect of the energy deficit queue.

channel power gain of g0, communication bandwidth of Bt
u,k,

and attenuation factor of ζ are set as -50 dB [51], 20 MHz [52],
and 0.2 [35], respectively. The environment-related parameters
of μ1 and μ2 are considered to be 15 and 0.5 [35]. The UAV’s
hovering energy is 220 Watts [24], and the energy coefficient b
is set as 10−28 [53]. The key parameters used in the simulations
are listed in Table II. The simulations are conducted based on
the MindSpore framework.

The proposed online UAV-assisted algorithm is compared
with the following baselines:
� Delay consider first (DCF): The optimal UAV-assisted

vehicular task offloading strategy is determined by min-
imizing the total vehicular task delay, regardless of the
UAV’s long-term energy constraint [54].

� Single slot constraint (SSC): Rather than following a long-
term energy constraint, a stricter per-slot energy constraint
to a UAV is implemented; therefore the energy budget is
not violated. [18].

� No UAV assistance (NUA): UAV-assisted task offloading
is not applied in this scheme. Vehicular tasks cannot be
offloaded to the UAV even if the corresponding RSUs
overload [55].

A. Guidance of the Energy Deficit Queue to UAV’s
Energy Consumption

Fig. 3 shows the impact of the energy deficit queue on the
UAV’s energy consumption. The transformation from P1 to P2

Fig. 4. Time-average vehicular task delay with different V .

Fig. 5. Time-average energy deficit queue with different V .

Fig. 6. Time-average energy deficit queue across time slots.

is achieved by constructing an energy deficit queue to guide the
UAV’s long-term energy consumption. A larger energy deficit
queue at the current time slot means a larger energy crisis,
namely, the UAV’s available energy for the following time slots
is less. Consequently, the energy consumption of the UAV will
decrease at the next time slots based on the guidance of the
energy deficit queue to follow the long-term energy constraint.
For example, the UAV consumes a lot of energy from the 5th
to 8th time slot; accordingly, the energy deficit enlarges. In the
following five time slots, the energy consumption is reduced to
cut the energy deficit. In this way, a real-time adjustment of the
UAV energy consumption can be achieved.

B. Impact of the Control Parameter V

Figs. 4 and 5 illustrate the time-average delay and energy
deficit queue under different control parameter V , respectively.
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Fig. 7. Impact of energy budget. (a) Time-average vehicular task delay. (b)Time-average energy deficit queue.

Combining Figs. 4 and 5, we find that the DCF, denoting the
delay-optimal method, has the minimal average delay and the
highest energy deficit. The average energy deficit queue of SSC
always remains zero for its strict energy rule per time slot.
In addition, the NUA has the maximum task delay compared
with other algorithms, which shows the rationality introducing
the UAV in our system to reduce the vehicular task delay.
Both the average delay and deficit queue remain static for the
baselines since they are independent of the control parameter V .
Furthermore, Fig. 4 shows that the average delay of our proposed
algorithm decreases with an increasing control parameter V and
eventually converges to the optimal one conducted by DCF.
Conversely, the deficit queue of our proposed algorithm grows
withV as shown in Fig. 5. The results imply an [O(1/V ), O(V )]
trade-off between the task delay and the long-term energy con-
straint, which is consistent with the proposed Theorems 2 and 3.

C. Queue Stability With Time Slots

To determine whether the long-term UAV energy constraint
can be satisfied, we need to estimate the queue stability based on
the energy deficit queue. As shown in Fig. 6, the time-average
energy deficit queue converges to zero with increasing time
slots. Recall that in Section V-C, the long-term energy constraint
of the UAV can be satisfied when limT→+∞ E{BT

u }/T = 0.
This demonstrates that the long-term energy constraint can be
effectively implemented to satisfy the energy budget. In addition,
we realized that a larger control parameterV has a slower conver-
gence rate. This is because more attention has been placed on the
vehicular task delay rather than the UAV’s energy consumption.

D. Impact of the Energy Budget

Fig. 7(a) presents the impact of the per-slot energy budget
on the time-average vehicular task delay. DCF is devoted to
obtaining the minimal vehicular task delay at the expense of
large energy consumption. Therefore, changing energy budget
does not influence its delay, and the optimal delay is always
maintained. For SSC and our proposed method, a larger energy
budget means that the UAV has more energy to address the
offloaded tasks; thus, the delay decreases and eventually con-
verges to the optimal delay conducted by the DFC. Moreover,
the fluctuation of the time-average task delay of the proposed

method is lower than that of SSC. This is because the proposed
method follows a trade-off between the vehicular task delay and
UAV’s long-term energy constraint, while SSC is constrained
directly by the energy budget per time slot. Fig. 7(b) explains the
impact of the per-slot energy budget on the time-average energy
deficit queue. Clearly, a larger UAV energy budget facilitates a
lower energy deficit queue, and hence the deficit queues of the
proposed method and DCF decrease with a UAV’s increasing
energy budget. SSC follows strict energy rules and always keeps
a zero energy deficit queue regardless of the varying energy
budget.

E. Impact of Computation Workloads

Fig. 8 shows the impact of computation workloads on the
time-average vehicular task delay and energy deficit queue.
Intuitively, task delay and energy deficit queue increase as the
computation workloads grow. However, DCF, as a method for
optimizing the vehicular task delay regardless of the energy con-
sumption, enables minimal vehicular task delay while producing
large energy consumption. For the energy deficit queue, NUA
and SSC remain zero, as NUA consumes no UAV’s energy and
SSC has low energy consumption. Furthermore, when the com-
putation workloads are small, the proposed algorithm performs
the optimal average delay similar to DCF. As the computation
workloads increase, the corresponding computing burden of
the UAV increases, and the energy deficit queue increases at
a fast speed. Based on the results, we find that our proposed
method achieves better performance in the trade-off between
the vehicular task delay and the energy deficit queue compared
with other baselines.

F. Impact of EH

Fig. 9 presents the impact of the EH on the time-average
vehicular task delay and the energy deficit queue. The horizontal
axis with ”EH exists” denotes that the UAV leverages the EH
technique to compensate for its energy; and ”no EH”, indicates
otherwise. Since EH enables the capture of renewable energy,
the UAV-assisted computing capability is improved, which facil-
itates less vehicular task delay and energy deficit queue. For the
DFS method, its time-average vehicular task delay and deficit
queue remain fixed. The reason is that the objective of DCF is
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Fig. 8. Impact of computation workloads. (a) Time-average vehicular task delay. (b)Time-average energy deficit queue.

Fig. 9. Impact of EH. (a) Time-average vehicular task delay. (b)Time-average energy deficit queue.

Fig. 10. Impact of the number of UAVs. (a) Time-average vehicular task delay. (b)Time-average energy deficit queue.

the minimal vehicular task delay, ignoring the violation of its
energy budget. SSC always keeps zero violations at the expense
of large vehicular task delay.

G. Impact of the Number of UAVs

We extend the UAV-assisted task offloading scenarios from a
single UAV to multiple UAVs. As shown in Fig. 10, we discuss
the impact of the number of UAVs under the different numbers
of overloaded RSUs. u = 1 denotes single UAV serves for
overloaded RSUs, and the UAV moves to different overloaded

RSUs across time slots. u = 49 represents that 49 UAVs are
deployed, and each UAV keeps fixed and delivers offloading
services for the corresponding overloaded RSUs in 7 × 7 mesh
grids. Since vehicular tasks are time-dependent, the number and
distribution of overloaded RSUs change across time slots. k= 1,
2, and 4 reflect the number of UAVs is 1, 2, and 4, respectively.
We define “(row, column)” as the distribution of overloaded
RSUs, where “row” and “column” denote the row and column
of the overloaded RSU in 7 × 7 mesh grids. In our setting, when
k = 1, the location of the overloaded RSU is (1, 2); when k = 2,
the locations of the overloaded RSUs are (1, 2) and (4, 3); when
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k=4, the locations of the overloaded RSUs are (1, 2), (4, 3), (6,6)
and (7,1). From the results, we find that more UAVs consume
more energy (especially hovering energy), while the energy
violation is mainly determined by the energy consumption of
the UAV’s processing. When the number of UAVs delivering
offloading services does not change, the energy deficit queue
remains fixed. Constrained by the limited service coverage, a
UAV is incapable of processing the excessive computation work-
loads from multiple overloaded RSUs simultaneously when k
increases. In this case, deploying multiple UAVs facilitates less
vehicular task delay and accordingly enlarges the energy deficit.
Based on the results, we find that a large number of UAVs are
beneficial to small vehicular task delay, while producing more
energy consumption, particularly for multiple overloaded RSUs.
Moreover, the deployment overhead should be considered in
real-world scenarios of UAV-assisted task offloading.

VII. CONCLUSION

In this article, we study the UAV-assisted vehicular task
offloading problem in VEC networks. To overcome the issue
of VEC overloads, we introduce a UAV to process the exces-
sive task computation workloads from the overloaded RSUs.
Constrained by the UAV’s long-term energy budget, we aim
to minimize the time-average vehicular task delay. To achieve
this, we transfer the long-term optimization problem to a real-
time solvable problem based on the Lyapunov optimization
technique. On this basis, we propose an online UAV-assisted
task offloading algorithm based on Markov approximation opti-
mization to determine the UAV-assisted offloading strategies.
Moreover, we conduct rigorous theoretical analysis to prove
that the proposed algorithm enables close-to-optimal solutions.
Additionally, extensive experimental results also demonstrate
the effectiveness of our proposed method. For future works, it
would be interesting to study the problem where a UAV not
only serves overloaded RSUs but also detects anomalies based
on the collected vehicular information. Furthermore, it would
be an interesting topic to discuss the impact of severe weather
conditions on UAV’s high-quality navigation in UAV-assisted
task offloading.
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